Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1243: 340830, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36697181

RESUMO

Unclear issues in protein studies include but not limited to the stability and denaturation mechanism in the presence of denaturants. Herein, we report a dynamic monitoring approach based on nanopore single-molecule biosensor, which can detect the protein's folding and unfolding transitions by recording a nanopore ionic current. When gradually increasing the concentration of denaturant guanidine hydrochloride (GdmCl), sensitive responses were observed with lysozyme unfolding. The emergence of the featured biphasic-pulse demonstrated the existence of a stable intermediate. It was the first time to experimentally confirm the dynamic equilibrium between the intermediate and the native states at single molecule level, therefore consolidating the standpoint of lysozyme denaturation process following the three-state model. Additionally, we got more insights into the conformation about the intermediate as globular-like structure, larger gyration radius, and enhanced positive charge density. We considered that the manner of denaturant toward lysozyme adopts the "direct" model based on stronger electrostatic and van der Waals forces. Nanopore biosensor exhibited excellent sensitivity with a low detection concentration of 280 pM and reproducibility in analysing the folding intermediate of lysozyme.


Assuntos
Nanoporos , Dobramento de Proteína , Desnaturação Proteica , Muramidase/química , Reprodutibilidade dos Testes , Guanidina/química , Cinética , Termodinâmica , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...